
~ Pergamon 
Int. J. Multiphase Flow Vol. 21, No. 3, pp. 335-349, 1995 

Copyright © 1995 Elsevier Science Ltd 
0301-9322(94)00082-4 Printed in Great Britain. All rights reserved 

0301-9322/95 $9.50 +0.00 

A T R A N S I E N T  T W O - F L U I D  M O D E L  FOR THE S I M U L A T I O N  
OF SLUG FLOW IN PIPELINES--I .  T H E O R Y  

V. DE HENAUt and G. D. RAITHBY 
Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3GI 

(Received 29 July 1993; in revised form 3 November 1994) 

Abstract--A one-dimensional transient two-fluid model is developed to predict transient slug flow in 
pipelines. To account for the interphase interactions, new constitutive relations for the drag coefficient 
and the virtual mass force for the slug flow regime are derived by applying the conservation equations 
to a geometrically simplified slug unit. New coefficients in the pressure gradient term in the two-fluid 
momentum conservation equations are also obtained to account for the non-uniform distribution of the 
phases and of the pressure drop along a slug unit. The new relations yield a more accurate treatment of 
the hydrodynamics of slug flow than traditional two-fluid models. Constitutive relations for other flow 
regimes can also be incorporated into the model, allowing the analysis of general transient two-phase flows 
in pipelines. 

Key Words: gas-liquid flow, two-fluid models, slug flow, transient, pipeline, drag coefficient, virtual mass 
force, constitutive relations 

1. I N T R O D U C T I O N  

The use of  two-phase flow pipelines is common practice in today's  petroleum industry. The 
presence of  gas and oil flowing simultaneously in a pipeline can give rise, under certain flow 
conditions, to important  transient problems. One such problem is terrain-induced slugging, which 
is observed in hilly-terrain pipelines. The liquid phase, being heavier than the gas phase, can 
accumulate in the valleys to form long liquid bridges that are eventually blown out from one 
pipeline section to the next due to the gas pressure. This results in a complex flow transient, with 
significant fluctuations in the outlet liquid mass flow rate. In order to size the gas-liquid separation 
unit located at the outlet of  the pipeline and to determine safe operating conditions for a given 
pipeline design, it is necessary to be able to analyse such transient two-phase flow problems. 

Transient two-fluid models are often used as a tool to predict complex two-phase flows in pipes. 
Because these models are based on the basic conservation principles for each phase, and treat the 
interphase interactions at a fundamental level, they can be applied to a wide range of two-phase 
flow problems. The main difficulty with two-fluid models resides in the development of  the 
constitutive relations which describe the wall to fluid and the interphase interactions through mass, 
momentum and heat transfer. In the case of  the slug flow regime, which is usually the dominant 
flow pattern in the uphill sections of  a pipeline, there exists no satisfactory treatment of  the 
constitutive relations for transient two-fluid models. 

Most of  the transient two-fluid models are found in the nuclear industry (e.g. RELAP5, Ransom 
1983; A T H E N A ,  Richards et al. 1985) where the main interest is in predicting fast transients such 
as in loss of  coolant accidents in nuclear power plants. In those models, the slug flow regime 
constitutive relations are often approximated by correlations used for other flow regimes or by a 
weighted average, based on void fraction, of  the limiting values for the stratified and dispersed flow 
regimes. Accurate predictions of  transient slug flow are, however, not possible without including 
in the model some details of  the slug flow hydrodynamic structure. In recent years, due to problems 
such as terrain-induced slugging, several transient two-fluid models were developed to analyse 
pipeline flows (e.g. Fabre et al. 1989; Bendiksen et al. 1991). In the Fabre et al. model, the slug 
flow regime is represented by a statistically determined sequence in time and space of the stratified 
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and dispersed flow regimes. This leads to a complex model for which closure relationships are still 
under development. The Bendiksen et al. model, called OLGA, uses empirical correlations to model 
slug flow. In addition, it neglects the virtual mass force that arises from the relative acceleration 
of the phases. This force can be significant for some transient slug flow problems (De Henau 1992). 

Other transient models such as the simplified two-fluid model of Taitel et al. (1989) or the severe 
slugging models of Taitel et al. (1990) and Sarica et al. (1991) have limitations in terms of their 
application to terrain-induced slugging or general transient slug flow problems. 

In this paper, a transient, isothermal, two-fluid model, based on the one-dimensional mass and 
momentum conservation equations for each phase, is presented. Because there is no adequate 
treatment of the slug flow regime for two-fluid models, new constitutive relations are derived to 
account for the interphase momentum interactions. This model is developed with the aim of 
predicting terrain-induced slugging problems. Because the model is based on basic conservation 
principles, it is not, however, restricted to terrain-induced slugging and can be used to solve general 
transient slug flow problems in pipelines. Constitutive relations for stratified, annular and dispersed 
flows can also be incorporated into the model, allowing the solution of general transient two-phase 
flows in pipelines. 

2. THE BASIC G O V E R N I N G  E Q U A T I O N S  

The two-fluid model is based on the conservation of mass and momentum for the gas and the 
liquid phases. In this study, the two-phase flow in a pipeline is assumed to be isothermal, 
eliminating the need for the energy equation. The basic conservation equations are derived in the 
work of Mathers et al. (1978) where the instantaneous differential equations for mass and 
momentum for phase k (k = G for the gas phase, k = L for the liquid phase) are integrated over 
an elemental volume occupied instantaneously by phase k, as shown in figure 1. By taking the limit 
Ax-*O, area averaged equations are obtained as: 

mass conservation for the gas and liquid phases 

'~ + ~ (AEpG u~) = 0 A ~  (egG) Ox 

O 
A ~-~ ((1 - e)PL) + ~xx (A(I - e)pLuL) = 0 [1] 

momentum conservation in the axial direction (or x-direction) for the gas and liquid phases 

(3 AE OPG 
A ~ (Epouo) + ~x (AEpGUGUG) + OX + AEpGg sin 0 = f o w  + Foi 

dt ((1 -- E)pLUL) + ~X (A(1 -- ~)pLULUL) + A(1 -- ~) c~PL c~x + A ( 1 - - Q P L g S i n O = F L w + F L i "  [2] 
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Figure 1. Definitions for the cross-sectional average. 
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In [1] and [2], A is the cross-sectional area of  the pipe and p,,  Uk and Pk are, respectively, the density, 
the velocity and the bulk pressure of  phase k. E is the fraction of the area A occupied by the gas 
phase. For  a uniform distribution of  the gas phase in the elemental control volume in figure 1, 
E corresponds to the void fraction. 0 is the angle of  inclination of  the pipe with respect to the 
horizontal, Fkw represents the wall shear force per unit length acting on phase k while Fki accounts 
for the x-component  of  the force per unit length exerted by the interface on phase k through the 
pressure and the shear stress. The difference between the interface pressure for phase k and the 
average phase pressure P, ,  which is flow regime dependent (the hydrostatic pressure difference in 
stratified flow for example), is included in the Fki term. 

In figure l, nx is the unit vector in the axial direction, nk is the interface normal unit vector 
directed away from phase k and n is the unit vector normal to the line of  intersection of the interface 
and the cross-sectional plane and lying in the cross-sectional plane. 

Since [1] and [2] are valid only within each phase, conservation equations are required for the 
interface. For  no mass transfer between the phases, only a momentum balance is needed. By 
assuming that the interface has a zero thickness and therefore has no mass and no momentum, 
the x-momentum interfacial conservation equation derived by Mathers et al. (1978) reduces to: 

(nx . nc(PGi-- PLi)i-- (nx . (nG . (zci -- ZLi)))i=12~R nc . nx)i . [3] 

The first term of  [3] represents the net pressure force acting on the interface while the second term 
is the net interface shear stress, a is the surface tension and R represents the mean radius of  
curvature of  the interface and is taken as positive in the direction of  n G. The braces in [3] define 
an integration along Ci which is the line of  intersection between the interface and the cross-sectional 
plane. For  any variable 4, this integration is given as: 

(~ ) ,=  f c  ~ dC 
i n k • n 

An additional equation required to complete the model is the equation of state that relates the 
gas phase density to the pressure by: 

Pc [4] 
Pc = ~ T "  

Equation [4] assumes that the gas phase behaves as a perfect gas. For  an isothermal flow, the 
temperature T is constant and ~ is the gas constant. The liquid density is assumed to be known. 
It is noted that, in real oil-gas systems, the gas phase generally does not behave as a perfect gas 
and the liquid phase properties can vary with temperature and pressure. Correlations to account 
for these effects can, however, be added to the present model. 

Equations [1] and [2] are equations for UG, UL, E and a cross-sectional average pressure P. To 
solve these equations requires [3] and [4], as well as additional constitutive relations for F,w, F,i, 
P , ,  P~, z~ that are flow regime dependent. The derivation of these relations is the topic of  the next 
section. 

3. THE C O N S T I T U T I V E  R E L A T I O N S  

The required constitutive relations for slug flow are developed in this section under the 
assumptions that the flow is isothermal and that there is no mass transfer between the phases. These 
relations are obtained by analysing a simplified slug flow "submodel" that uses as input the values 
of  UG, UL and E from the solution of  [1] and [2]. The submodel provides the constitutive relations 
and the parameters that arise in these closure relations. The submodel is therefore analogous to 
a turbulence model that uses the mean-flow variables predicted by the Navier-Stokes equations, 
and in turn provides the constitutive relations for the Reynolds' stress closure of  the mean-flow 
equations. 

The use of  a slug flow submodel to provide constitutive relations for the mean-flow equations 
permits either steady or transient slug flows to be calculated. Standard slug flow models, like the 
one of  Kokal & Stanislav (1989), allow only the solution to steady-state fully developed slug flows. 
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Figu re  2. D e s c r i p t i o n  o f  a s lug uni t .  

The submodel has several components that are based on earlier work; these are presented in 
sections 3.1 and 3.2. The major contributions of the present paper are the development of the drag 
coefficient, Co (derived in section 3.3), the derivation of the virtual mass force (section 3.4) and 
a correction to the pressure gradient term that accounts for void distribution (derived in appendix 
B and used in section 3.3). 

3.1. Approximations and fundamental relations 

In this section, the approximations used in the slug flow submodel are presented. Based on these 
approximations, relations for the interfacial and the wall shear stresses for the slug flow regime 
are obtained. 

The simplified geometry of a "slug unit" used in the submodel is illustrated in figure 2. The 
following approximations are adopted: 

SLl - - the  contribution of the surface tension in the interface momentum balance is assumed 
to be negligible. 

SL2--the phase pressures are assumed to be equal at a given axial location 

Pt. = PG = P [5] 

where the liquid phase is taken as the continuous phase. P is the average pressure over 
the cross-sectional area A. 

SL3--the gas bubbles in the liquid slug portion of a slug unit are uniformly distributed. 
SL4 the gas bubbles and the liquid phase in the liquid slug portion of a slug unit have the 

same velocity. 
SL5--the liquid film in the film region of a slug unit is approximated by a uniform liquid layer. 
SL6--the Basset forces are ignored. 

Following the work of Dukler & Hubbard (1975), the slug unit, which is moving with a 
translational velocity v,, is divided into two regions: the "liquid slug region" and "film region", 
as shown in figure 2. The liquid slug region, of length ls, is aerated by dispersed bubbles. At the 
nose of the slug, the bubbles are distributed in the cross-sectional area because of the mixing 
resulting from the absorption of the liquid film into the liquid slug. However, due to buoyancy 
effects, the gas bubbles have a tendency to accumulate in the upper portion of the pipe towards 
the tail of the slug. In the present work, no attempt is made to model the detailed motion of the 
gas bubbles within the liquid slug and assumption SL3 is used. From assumption SL4, the bubbles 
have the same velocity as the liquid in the liquid slug zone, which is given by the mixture velocity 
vs. This is a good approximation for horizontal and near horizontal pipes. As the inclination angle 
increases, a drift velocity resulting from buoyancy effects should be added to the mixture velocity 
(Taitel & Barnea 1990b). The liquid volume fraction in the liquid slug zone is designated by Rs. 

The film region, of length /r, is made up of a liquid film and an elongated bubble. The liquid 
velocity in the film is denoted by Vtr while the gas velocity in the elongated bubble is Vcr, the liquid 
fraction is Rr. From assumption SLS, a step change is assumed in the liquid height from the liquid 
slug to the film region, with the film being approximated by a uniform layer. This is a simplification 
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of the more realistic geometry used for example by Dukler & Hubbard (1975) or by Kokal & 
Stanislav (1989), in which the liquid height decreases gradually. Assumption SL5 represents a good 
approximation for a sufficiently long film. A study by Taitel & Barnea (1990a) reveals that the use 
of the geometry shown in figure 2 yields pressure gradients for steady-state slug flow that are not 
much different from the pressure gradients obtained when the shape of the liquid film is accounted 
for. Tests in that study were run under a wide range of flow conditions. Similar conclusions were 
reached by De Henau (1992). 

The main contribution to the pressure drop in slug flow results from the pressure drop in the 
liquid slug zone. The pressure drop in the film zone becomes signficant only for a long film. It 
should be added that assumption SL2 is not strictly valid in the film region because of the 
hydrostatic difference between the liquid layer and the gas bubble above it. However, because the 
film is assumed to be uniform, this assumption contributes no error to the pressure drop along the 
film region. 

With assumption SL1, the interface momentum equation [3] is rewriten as: 

(n," nG (P~i-  PLi))i- (nx" (nc," (ZGi- ZLi)))/= 0. [6] 

Equation [6] simply states that the force exerted on the interface by the liquid phase is equal in 
magnitude and opposite in sign to the force exerted on the interface by the gas phase. The interfacial 
force per unit length acting on the liquid, FLi, is therefore related to the interfacial force per unit 
length for the gas phase, F~, by: 

F L i  = - -  F G i .  [7] 

Equation [7] can therefore replace [3]. The interfacial force may be assumed to be composed of 
the drag force, the virtual mass force and the Basset force (Ishii & Mishima 1984). Ignoring the 
Basset force (approximation SL6), the interfacial force per unit length for the liquid phase in a slug 
flow regime is written in a form analogous to that of a bubbly flow, that is: 

E L  i 1 E dur + [8] =~CDPL[UrIUr ]A -F CvMAPL dt " 

Ur is the average relative velocity between the gas and the liquid phase and Ur + is a different relative 
velocity which will be defined later; l is the total length of the slug unit, l = l~ + lr. Co represents 
the drag coefficient while CVM is the virtual mass force coefficient. 

The wall shear force includes the contributions from the liquid slug zone (denoted by the 
subscript ks) and from the film zone (subscript kf). The wall shear force per unit length, Fkw, can 
therefore be written as: 

Fkw = zkS, = zks ~ + "CkfSkf[-f[ , [9] 

where z, and S, represent the wall shear stress for phase k and the contact perimeter between phase 
k and the wall, respectively. 

Closure relations are needed for CD, CVM, du+/dt and for the components of the wall shear force. 
Also required are the various additional parameters that arise in these closure relations. These 
parameters are obtained from a detailed analysis of the slug unit illustrated in figure 2. 

3.2. Detailed description of the slug flow submodel 

As will become evident, the variables required from the submodel are VLf, VGf, V~, Vt, Rs, Rf, Is, 
lr and urt~), the average relative velocity between the gas phase and the liquid phase for a 
steady-state fully developed slug flow. In the development of the submodel, it is assumed that the 
variables UG, UL and E are known from the solution of [1] and [2]. 

For a slug unit with a uniform film shown in figure 2, the average liquid area fraction (1 - E) 
is given by: 

( 1 - E ) =  Rf~-b Rs~. [10] 
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A liquid mass balance over a slug unit can be performed by integrating the liquid mass flow rate 
at a fixed cross-section over the time of passage of a slug unit, as described by Taitel & Barnea 
(1990b). From this balance, a relationship for VLt is obtained as: 

(1 -- E)ULI -- Rsvsls [111 
VLf = Rrlf 

Using a similar approach for the gas phase, vcr is given by: 

Euc, l - (1 - Rs)vsl~ 
vGr (1 - ROll [12] 

Assuming that within a slug unit the gas density is constant, a continuity balance on the liquid 
and the gas indicates that the total volumetric flow rate is independent of axial location. Hence, 
within the liquid slug zone: 

vs = (1 -- E)UL + ~UG. [13] 

The slug unit translational velocity vt is usually expressed as: 

vt = C0vs + Vd, [14] 

where Co is a weighted flow distribution parameter and va is a drift velocity. The following 
correlations, developed by Th6ron (1989) for air-water slug flow, are used: 

0.23 
Co = 1.3 - + 0.13 sin 2 0 [151 / F r  NtlO 

1 + ~ r  c°s0  ) 

vd = x / ~  - 0 . 5  + Fr 10 cos 0 + 0.35 sin 0 [16] 

1 + Fr~ cos 0 

with Fr = v~/w/-gD, Fro = 3.5 and 0 is the angle of inclination of the pipe with respect to the 
horizontal (figure 2). 

The liquid fraction within the liquid slug region, Rs, is usually determined by an empirical or 
semi-empirical correlation. In the present work, the correlation of Andreussi & Bendiksen (1989) 
is used; this correlation, which is based on a physical model for the production and transport 
processes for the bubbles in the liquid slug, is: 

R s ~--- 1 Us - -  Umf [ 1 7 ]  

U s --~ Umo 

with 

Drn o = 240011 - ½ sin 0]B0-3/4,,//~ 

pLgD 2 
B o -  

G 

D being the pipe diameter and g the gravitational acceleration. An evaluation of various Rs 
correlations conducted by Th~ron (1989) shows that the model of Andreussi & Bendiksen (1989) 
is the most accurate over a wide range of experimental conditions. 

The liquid fraction in the liquid film zone, Rr, is calculated from the solution of  the liquid phase 
and gas phase momentum balances for the case of a uniform liquid layer. Eliminating the pressure 
gradient by combining the liquid and the gas momentum equations yields (Taitel & Barnea 1990b): 

Z'LfSLf  "CGfSGf "riSi(l 1 ) 
--(PL--Pa)gsinO+ AR~ A(1--RO A ~ r r + ~  = 0 .  [181 
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zi and S~ are the interface shear stress and width, respectively, in the film region. Since Skr and Si 
in [18] depend only on Rf and since the stresses (relations given later) depend on velocities given 
by [11] and [12] that also are a function of  Rr only (for given uo, UL and E), [18] can be numerically 
solved for Rf. 

At the present time, the methods to evaluate the length of  the liquid slug region, Is, are still very 
approximative. Following the recommendations of  Kokal & Stanislav (1989) and Taitel & Barnea 
(1990a), ls is estimated by: 

Is = 30D. [19] 

For large diameter pipelines (D > 0.30 m), Scott et al. (1989) show that liquid slugs tend to grow 
as they flow through the pipeline to lengths larger than 30 pipe diameters. This effect is not 
accounted for in the present work although the total length I of  a slug unit can vary with time. 

An additional useful variable supplied by the submodel is the average relative velocity between 
the gas phase and the liquid phase for a steady-state fully developed slug flow, u~ss). A liquid mass 
balance at the nose of  the liquid slug (region C-D  in figure 2) yields: 

ULfR f = V t R r + (u s - -  v t ) R  s [20] 

Combining [10], [11] and [20] gives: 

Rs 
UL = Ut - -  (vt -- vs). [21] 

(1 - E )  

Equation [21] is valid only for a steady-state fully developed slug flow. Through a mass balance 
for the gas phase in region C-D,  a similar equation is obtained for UG: 

( 1  - -  Rs) 
UG = Vt - -  (Vt -- Vs) [22] 

£ 

which yields the relative velocity U.ss): 

Rs-(l - e )  
(ct - vs). [23] Ur(ss) = U G - -  UL~--- E ( I  - -  ~:) 

Finally, the following correlations are used to evaluate the shear forces in the liquid slug zone and 
in the film zone: 

T L f = - - - ~ L f P L I U L d V L F  "CGf=- -~GfPG[VG~VGf  [24] 

"CLs:--~LsPL[VdVs '~Gs= ---~fGsPGlVslVs [25] 

Z i = ---~fiPG[VGf- VLfI(VGf- ULf ) [26] 

/~f- sin/~f 
Rf = [27] 

21t 

D D 
SLf = 5 / ~ f  SGf = "2  (2n --/~y) [28] 

SLs = rcDRs SGs = nD(l  - Rs) [29] 

S~ = D sin/~f/2 [30] 

flf is the angle subtended by the liquid wetted perimeter in the film region. The wall and the interface 
friction factors can be evaluated by a variety of  correlations. The correlations used in this paper 
are given in appendix A. 

With UG, UL and E given, as already described, vs is evaluated from [13] and vt from [14]. ls is given 
by [19] and Rs by [17]. VLf, VGf, /f and Rf are calculated by solving numerically [10], [11], [12] and 
[18]. Equation [23] is used to evaluate u~ss). These variables describe the slug unit, but do not 
provide the FLi and FGi relations required to close the mean-flow equations ([7] and [8]). This closure 
is achieved by deriving new relations for CD, CVM and u f  ([8]), that depend on the submodel just 
described. The following two sections provide this derivation. 
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3.3. Derivation of the slug flow drag coefficient Cn 

An approach often utilized to determine the interface friction factor or drag coefficient in a 
two-phase pipe flow is to perform an experiment and deduce the interface shear stress or the drag 
from pressure drop and liquid fraction measurements and the steady-state fully developed 
momentum equation for either the gas or the liquid phase [see, for example, Andritsos & Hanratty 
(1987) for interface friction factor for stratified flow]. Although obtained from steady-state data, 
the experimental correlations for the interface friction factor are used in transient two-fluid models 
with a reasonable degree of accuracy. 

In the present work, it is proposed to derive the slug flow drag coefficient through a similar 
approach except that the experimental data are replaced by the slug flow submodei. Considering 
a steady-state fully developed slug flow, the x-momentum conservation equation for the liquid and 
the gas phases are, from [2]: 

- A ( 1  - c )  --L - A ( 1  - -  E )pLg  sin0 + FLw + /'Li = 0 
COx 

[311 

_AE ~'% COx - Aepc g sin 0 + FGw + Fci = O. [321 

For a steady-state fully developed slug flow, the interface interaction terms, based on [7] and [8], 
reduce to: 

If ' ,  E a  1 
iVLi = 2 tcDPL Ur(ss) Ur(ss) --l- FGi = __~CDPL[Ur(ss)[Ur(ss)EA ~ - .  [33] 

Making use of assumption SL2 and substituting [9] and [33] into [31] and [32] yields: 

cOP ~ cA 
- A ( I  - E)~x - A(1 - E)pLg sin 0 + "CLS L At- 5CDPL[Ur(s~)[Ur(ss)-~- : 0 [341 

COP t EA 
-- AE ~ -- AEp~ g sin 0 + re SG - ~CDPLlUr(ss)lUr(ss) ~ -  ~- O. [35] 

For a pipe with a constant cross-sectional area A, the integration of [34] and [35] over the length 
of a slug unit gives: 

f0 COP dx '[TLSLI l -- (1 --C)~xx --(1 --E)PLlg sin0 + ~  +~CDPLlU,~ss)lU~ss)E =0  [36] 

~t COp % S ~ l  
- Jo e ~x dx - cpclg sin 0 + ~ - I C D P L l U r ( s s ) [ U r ( s s ) E  ~ -  O. [37] 

Because the local area fraction for phase k and the pressure gradient vary along the length of a 
slug unit, the integral of the pressure terms in [36] and [37] needs special treatment. Denoting the 
variables at a given cross-section in the slug unit with "*", one may write: 

and 

lfo E =-/ E*dx 

1 

CO---£ = 7 30 \ Ox ] dx 

E \COx,] dx=ccEcox l  
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Equations [36] and [37] may then be rewritten as: 

OP ZL SL I l 
--CL(1 - -  e )  ~ 1 -- (1 -- e)pLlg sin 0 + ~ + ~CDPLlU.ss)Iu~)e = 0 

dP ZGScl l 
--Coe ~X 1 -- ePolg sin 0 -f A ~CDPLlUr(~s)iUr(s~)e = 0 

with: 

[38] 

[39] 

i,¢l _,,)(or), 
CL=J0 \ 0 X }  dx [40] 

Jo \ ~x ) dx 

f i  .fOP'~* 
1 - -  C L ( I  - -  £ )  [41] 

CG:  

e J0 k Ox) dx 

Equations [38] and [39] therefore represent the momentum conservation equations for the liquid 
and the gas phases, for a steady-state fully developed slug flow, integrated over the length of  a slug 
unit. In those equations, OP/Ox is the average pressure gradient over the length of  a slug unit. The 
wall shear force z, Sfl, evaluated by [9], and the area fraction e are also taken as averages over the 
length of  a slug unit. The coefficients CL and co account for the fact that the liquid and the gas 
phases are not distributed uniformly along the slug unit and that the pressure gradient in the liquid 
slug zone is different from the pressure gradient in the film zone. In previous two-fluid models, these 
coefficients have always been assumed to be unity; CL and CG represent therefore a new component 
in the two-fluid model for the slug flow regime. The derivation of  the CL coefficient is given in 
appendix B. 

By combining [38] and [39], the pressure drop term (OP/Ox)l can be eliminated and an expression 
for the drag coefficient CD is obtained as: 

Co - ~ -  ACL(1 -- e) + ~ + lg sin - -  . [42] 
RL {:Ur(ss) \ C L  ~G 

Equation [42] is the new relationship for the drag coefficient for the slug flow regime. The approach 
used to derive Co guarantees that for a steady-state fully developed slug flow, the relative velocity 
Ur obtained from the solution of the two-fluid model will be equal to the steady-state relative 
velocity u,ss). Except for the average area fraction e and the phase velocity u,, which come from 
the mean flow equations, all the variables required to calculate Co from [42] are supplied by the 
slug flow submodel. 

3.4. Derivation of  the slug flow virtual mass force 

The virtual mass force arises when there is a relative acceleration between the gas and the liquid. 
Ishii & Mishima (1984) developed a correlation for the virtual mass force for slug flow from a 
simple potential flow analysis using a Bernouilli equation. In the present study, a similar analysis 
is used to derive the virtual mass force for the large bubble in the film zone. Because the small gas 
bubbles in the liquid slug zone are assumed to have the same velocity as the liquid, the contribution 
to the virtual mass force from that region is ignored. 

Referring to figure 2, the mechanical energy equation for the liquid in the control volume A-B'  
moving at a velocity vt may be written as: 

1 d 2 
m ~ [(VLf -- vt) ] = - -  (PA - -  PB') [43] 

PL 

where m = p L A R f l f ,  tit =pLARr(VLf--Vt) and PA and PB, are the average pressures over the 
cross-sectional area at A and B', respectively. In [43], it is assumed that the mass of  the liquid, the 
internal energy and the potential energy in the control volume are constant. 



344 V. DE HENAU and G. D. RAITHBY 

Simplifying [43] yields: 

d 
PA -- Pw = - - P L  If ~ (V t - -  ULf ) .  

The force acting on the gas bubble due to an acceleration of the bubble with respect to the liquid 
film is therefore given by: 

(PA -- PB')(1 -- Rr)A = --pLlf(1 -- Rf)A d (vt - VLr). [44] 
13/ 

Equation [44] indicates that a positive relative acceleration results in a negative force on the bubble, 
as expected. The virtual mass force per unit slug length is therefore, from [44]: 

du [  lr d 
CvMApL -- (1 - -  Rf)ApLZS~. (v t - v/f) [45] 

dt l 

from which the following can be written: 

Cv~ = ~ (1 - Rr) [46] 

du7 d 
dt = dt (vt - VLf). [471 

The virtual mass coefficient from [46] corresponds to the volume fraction of  the large bubble within 
the slug unit. Ishii & Mishima (1984) obtained a similar virtual mass coefficient, indicating that 
as the volume fraction of  the bubble increases, the virtual mass coefficient should increase due to 
stronger coupling between the phases. 

By combining [20] and [23], v t -  VLf can be expressed as: 

R, ~ ( l - e )  , 
[481 

Although [48] is strictly valid for a steady-state fully developed slug flow, it is used here as an 
approximation to vt - VLr for a general slug flow situation. Substituting [48] into [47] allows writing 
the virtual mass force per unit slug length as: 

C A du~+ A [-Rs E(1 - -E)  d (UG--UL) VM PL--~-:CvM P L L ~ f R ~ Z - ) d t  

R S ((2E - l ) (Rs - (1 - ~)) + E(1 - E)'L , d ] 
Rr\-  ~ i - - ( 1 - - - ~  " ) ( U G - - U L ) ~ ( E  ) . [49] 

The total derivative of [49] is defined as: 

d ~ 
dt ~t + V t3x 

In the derivation of [49], the derivatives of Rs and R f  a r e  not accounted for because these cannot 
be easily defined in terms of the primitive variables c and uk. An attempt to do so resulted in very 
unstable solutions. Hence, for the present time, the virtual mass force is defined by [49] keeping 
in mind that it is only an approximation. 

The virtual mass force derived by Ishii & Mishima (1984) is only the first term of [49] with, 
however, a different coefficient in front of the total derivative of the relative velocity. The second 
term in [49] indicates that a change in the liquid area fraction contributes to the virtual mass force 
since it induces a change in the relative velocity of the phases. 
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4. MODEL SUMMARY 

The one-dimensional transient two-fluid model for slug flow is therefore composed of [l], [2], 
[4] and [7]. The additional four equations required to close the model are: 

• [5] for the phase pressures Pk 
• [8] for the interfacial force per unit length for the liquid phase FLi with Co evaluated by [42] 

and the virtual mass force by [49] 
• [9] for the wall shear force for the liquid and the gas phase, FLw and Few. The components 

of the wall shear force are given by [24], [25] and [28], [29]. 

5. CONCLUSIONS 

A transient, isothermal, two-fluid model is developed to predict transient slug flow in pipelines. 
The model is based on the one-dimensional form of the mass and momentum conservation 
equations and accounts for the wall to fluid and the interphase interactions through constitutive 
relations. Because there exists no satisfactory treatment of the slug flow regime for two-fluid 
models, new constitutive relations for the drag coefficient and for the virtual mass force are derived 
by applying the conservation equations to a geometrically simplified slug unit. New coefficients in 
the pressure gradient term in the two-fluid momentum conservation equations are also derived to 
account for the non-uniform distribution of the liquid phase and the local pressure gradient along 
a slug unit. The resulting two-fluid model can be used to solve general steady-state or transient 
slug flow problems and has a more accurate treatment of the hydrodynamics of the slug flow regime 
than traditional transient two-fluid models. While the model theory is discussed in the present 
paper, comparisons between the model predictions and experimental data for steady-state and 
transient slug flow problems are presented in the companion paper (De Henau & Raithby 1995). 
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A P P E N D I X  A 

Evaluation of the Friction Factors 
The wall friction factors in the liquid slug and in the film regions are evaluated using: 

I 16 R~k ReHk ~< 2000 

~ I  ( 6 " 9 ( e / D H k ) ' " ) ]  -2 
fk=  --3.6 log R---~,k + Renk ~> 3000 [A1] 

/ /3 60OO\ L ~ - -  R--~Hk)~turb - -  flam ) + flare 2000  < Rertk < 3000 

where e is the pipe wall roughness and Dr~k is the hydraulic diameter for phase k. Rein is the 
Reynolds number based on the hydraulic diameter and is given by: 

pkUkDHk 
ReHk -- 

faro isfk for Rein = 2000 andfu,b isfk for Reuk = 3000. The expression for the turbulent wall friction 
factor follows the recommendation of White (1986) for a single phase turbulent pipe flow. 

The liquid slug region is treated as an homogeneous and isotropically distributed mixture, for 
which case the hydraulic diameters for the gas and the liquid phases are: 

4AL 4A c 
DHL - -  S L  - -  D DHo - So - D. [A2] 

The film region is treated as a stratified flow and: 

4AL 4AG 
DHL = S--~-- Dr~o - So + S~" [A3] 

The interface friction factor in the film region, f ,  is evaluated using the correlation of Miya et al. 
(1971) for wavy stratified flow: 

f = 0.008 + 2.0 x 10 -5 Re~ [A4] 

with Re* = rhL/r/LS~'rh L is the liquid mass flow in the film and qL is the liquid viscosity. 
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APPENDIX B 

Derivation of the cL Coefficient 
The expression for CL is obtained by integrating the liquid and the gas momentum equations over 

the film zone and the liquid slug zone. For  the film zone (from A to B in figure 2), the stratified 
flow equations for the liquid and the gas phases are used. For  the liquid slug zone, a global 
momentum balance is written for region B-C while region C-D is treated in a similar way as region 
A-B. The length of  regions A-B and B--D a r e  If and Is, respectively. The region C-D  has a length 

where (-- .  0. 
For  a pipe with a constant cross-sectional area, the steady-state momentum equations for the 

liquid phase and the gas phase, at any cross-section along the length of  the slug unit, relative to 
a coordinate system moving at a velocity vt, are: 

O-~O ( O PL \ F_~ FU_A_ [BI] [(1 - E*)peVL(VL -- Vt)] = --(1 -- e*) -~--X ) -- (1 -- e*)pLg sin 0 + + 

OX[E*OGVG(VG--Ot)]= - -  E * ( 0 P G  x~ rG i  [B2]  - -  \ C3X ] --  E *PGg sin 0 + + 

where v, = Vkf in the film zone and vk = vs in the liquid slug zone. E* and (OPk/Ox)* are local values 
of  the area fraction for the gas and pressure gradient in the slug unit. 

The average pressure over a cross-section in the slug unit, P, can be written in terms of  PL and 
PG using: 

P = (1 -- ~*)PL + e ' P c .  [B3] 

It also possible to define the difference between the average interface pressure Pi at any cross-section 
and the average phase pressure Pk as: 

AP~, = e i - -  Pk" [Ba] 

Using [B3] and [B4], the following may be derived: 

PL = P + ¢ *(APe, -- APu) [B5] 

Pc = P -- (1 -- E * ) (APoi -  APu). [B6] 

For  a stratified flow with negligible surface tension, APki is due only to hydrostatics and is given 
by: 

APLi = --pLgD COS 0 --½ cOS "~ 3x(1 "-- E*) sin3 [B7] 

APGi = + p~gD cos 0 ½ cos -~ + ~ s in  [B8]  

where (1 - E*) = (/3 - sin/3)/27t (/3 being the angle subtended by the liquid wetted perimeter). For  
a dispersed flow, the phase pressures can be assumed to be equal (Hancox et al. 1980) and: 

APLi = APGi [B9] 

Making use of  [B5] and [B7], it can be shown that, for the film region (region A-B), [B1] and 
[B2] can be rewritten as: 

C3-- ~ [(1 - -  E*)PLVL(V L --  V,)] = - - ( 1  - -  C \C3X j - -  (1 - -  E*) [E*(APGi - -  APLi ) ]  

--(1 -- E*)pLg sin0 -¢ zLfSLr ziSi APLiO( * A A ~ x  [BlO] 

0 ,f~P'~* 0 
~-~ [E*pG%(% -- Vt)] = --E ~ X )  + E* ~X [(1 -- E*)(APG~- APu)] - E*pcg sin 0 

. vGfScr vi Si AP dE* +--~-  + - -  [ a l l ]  
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with Zkf, %, Skf and S~ defined in appendix A. The terms in [B10] and [BI 1] that contain APLi and 
APG~ vary along the film as a function of  e* only. Equat ions  [B10] and [Bl l ]  may therefore be 
rewritten as: 

O-'-x [(1 -- e *)PL VL (rE -- Vt)] = -- (1 -- e *) -- (l -- e *)PEg sin 0 

TLfSLf TiSi ~ * 
.4 ,4 + F~'~*'-g-Jx' ' [B121 

& 
- -  - - e * p G g s i n O + ~ + ~ - + F 2 ( ~ * ) ~ - ~ x  [B13] 

F~ (e *) and F2(e *) are functions of  e *. For  a uni form liquid film, the integration of  [BI2] over region 
A - B  yields: 

(1 - e \ ~ x  ] dx  = - - R s p L V s ( V  s - -  Vt) + R r P L V L r ( V L r - -  Vt)  - -  Rrlrpug sin 0 

-t- ZLfSLf/f riSilr I ~ 
A A + F , ( e* )de*  [B14] 

JRf 

An expression for "qSilr/A may be obtained by combining [B12] and [B13], applied to the region 
o f  uni form liquid film, to give: 

TiSi/r "~LfSLf/f(1 -- Rf) "CGfSGflfR f 
A A A 

Rf(1 -- Rf)lf(pL -- PG)g sin 0 

Substi tuting [BI5] into [BI4] gives: 

IBIS] 

I tJ(1 - \Ox,]  dx  = --RsPLVs(V s -- vt) -t-- RfpLVLf(VLf- Vt) 
do 

-Rr l r [pLRf  + po( l  - Rf)]g sin 0 + rLfSLf/fRf + ZGfSGflrRf + F 1 (e*) de* [B161 
A A f 

Now,  adding [B12] and [BI3] results in: 

Ox]  -O--x [(1 - e*)pLVL(VL -- Vt)] -- [e*pGVo(VG -- Vt)] -- (1 -- e*)pLg sin 0 

TLfSLr TGf SGf . *) 
--e*pGg sinO + - - - - ~  + - - - ~ - -  + [F~(e + F2(e*)] ~.~ [B17] 

Integrating [B17] over region A-B  gives: 

\ dx  ] dx  = -- RsPL Vs(vs -- vt) -~ RfRLULf(ULf-- Vt) - -  (1 - -  Rs)pGVs(V s -- Vt) 

+(1 -- Rr)pGVGf(VGr- U t )  - -  lf[pLRf+PG(1 -- Rf)]g 

x sin 0-{ ZLfSLr/f ~ "CGfSGflf I t~ 
A A + JR [F,(e*) + F2(e*)]de* [B18] 

f 

Because the length of  region C - D  is infinitively small, the momen tum conservation for that  region 
reduces to a balance between the momen tum fluxes and the pressure forces. The integration of  [B 12] 
over that  region is therefore: 

I 'f+'S (1- e*)(c~P'~ *\&x] dx=--RfPLVLf(VLf--vt)+RspLv~(v~--vo--fRF'(e*)de*"~ [BI91 
~lf+ls--~ 
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while from [B17]: 

f#+" (OPt*  - -  dx = --RrPLVLr(VLf-- Vt) + R~pLV~(V~ -- Vt) -- (1 -- ROpGVGf(VGf-- Vt) 

+ ( 1 - R s ) p G v s ( v s - v t ) -  [F~ (E*) + F2(E*)] dE* [B20] 
f 

For region B--C, which is treated as a dispersed flow, a global momentum balance is obtained by 
adding [Ill] and [B2]. As a result of [B9], the summation of [BI] and [B2] yields: 

~ X /  ~X [(1 - -  ** )PLVL(V L - -  Vt) ] - -  ~ X  [~'*RGVG(VG - -  v t ) ]  - -  (1 - -  * *)PLg 

rLs SLs ZGs SGs [B21] × s in 0 - E*pGg sin 0 + ~ + 

Multiplying [B21] by (1 -E*)  and integrating over region B-C gives: 

I If+Is-( , [dP\*  ~CLsSLslsRs rGsI~R~ 
(1 --  E ) ~ x )  dx = -Rsls[pLRs + pG(1 -- R,)lg sin 0 -t 4 [B22] 

j# _ _ A A 

It is assumed here that, over region B-C, E * is constant and equal to (l - Rs). In a similar fashion, 
from the integration of [B21] over region B--C, one obtains: 

r+.':¢ (OP']* ZLsSesls ZG, SGs/s [B23] 
r \ O x ]  dx = --ls[pLRs + pG(1 - -  R~)]g sin 0 4 ~ + 

Hence, summing [B16], [B19] and [B22] results in: 

fo ( 1 -  \ O x /  dx=--Rr l f [pLRf+pG(1--Rf )]gs inO--R~l , [pLRs+pG(I- -Rs)]gs inO 

rLrSLrlrRr ZGrSGflfRf "rLsSL, I~Rs rG, Sc, slsRs 
4 + + 4 [B24] 

A A A A 

while from [Bl8], [B20] and [B23]: 

l(Oe~ * 
\tgx ] dx = --lfLOLRf + pG(I -- Rf)lg sin 0 - l~LoLRs + pG(I -- R~)]g sin 0 

%, SL, ls ZGs SGS ls • T L f S L f l f  rGfSGflf -t + [B25] 
+ ~ + ~  A A 

Equations [B24] and [B25] are used in [40] to obtain eL. 
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